

2×Taq Master Mix

T665627

Storage at -20°C. Avoid freeze/thaw cycle

Introduction:

Taq Master Mix is a 2×concentrated solution of Taq Master Mix, Mg2+, dNTPs and all other components required for PCR, except DNA template and primers. This pre-mixed formulation saves time and reduces contamination due to a reduced number of pipetting steps required for PCR set up. The mix is optimized for efficient and reproducible PCR. Its application for routine PCR with high reproducibility and generation of PCR products for TA. The original formula makes the reaction system stable. At the same time, complex DNA templates can be effectively amplified, and operational error and contamination can be minimized to the possible.

Ordering Information:

Cat No.	Component	T665627-5mL	Storage
T665627A	2×Taq Master Mix	1mL×5	-20°C. Avoid freeze/thaw cycle
T665627B	dd H ₂ O	1mL×5	-20℃.

Notes: 2×Taq Master Mix contains Taq DNA Polymerase, 3mM MgCl₂ and 400μM each dNTP

Protocol:

Gently vortex and briefly centrifuge 2×Taq Master Mix after thawing. Place a thin-walled PCR tube on ice and add the following components for each 50μL reaction:

PCR reaction:

Components	Total volumn:50μL	Concentration
2×Taq Master Mix	25 μL	1×
Forward Primer, 10 μM	2 μL	0.4 μΜ
Reverse Primer, 10 μM	2 μL	0.4 μΜ
Template DNA	<0.5 µg	$<0.5 \mu g/50 \mu l$
ddH_2O	up to $50 \mu L$	

Notes: The recommended concentration range of the PCR primers is 0.1-1 μ M. Excessive primer concentrations increase the probability of mispriming and generation of non-specific PCR products.

PCR thermal cycling conditions:

Step	Temperature	Time	Number of
			cycles
Initial denaturation	94°C	2 min	
Denaturation	94°C	30s	
Annealing	55-65°C	30s	25-35
Extension	72℃	30s	
Final Extension	72°C	2 min	

Notes:

- 1) The annealing temperature should be 5°C lower than the melting temperature (Tm) of the primers. Annealing for 30 seconds is normally sufficient. If non-specific PCR products appear, the annealing temperature should be optimized stepwise in 1-2°C increments.
- 2) The optimal extension temperature for Taq DNA polymerase is 70-75°C. The recommended extension step is 2 min/kb at 72°C for PCR.
- 3) If less than 10 copies of the template are present in the reaction, about 40 cycles are required. For higher template amounts, 25-35 cycles are sufficient.

